skip to main content


Search for: All records

Creators/Authors contains: "Ramshaw, B. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. We present in situ calorimetry, thermal conductivity, and thermal diffusivity measurements of materials using temperature-sensing optical wireless integrated circuits (OWiCs). These microscopic and untethered optical sensors eliminate input wires and reduce parasitic effects. Each OWiC has a mass of ∼100 ng, a 100-μm-scale footprint, and a thermal response time of microseconds. We demonstrate that they can measure the thermal properties of nearly any material, from aerogels to metals, on samples as small as 100 ng and over thermal diffusivities covering four orders of magnitude. They also function over a broad temperature range, and we present proof-of-concept measurements of the thermodynamic phase transitions in both liquid crystal 5CB and gadolinium. 
    more » « less
  5. Abstract One of the main developments in unconventional superconductivity in the past two decades has been the discovery that most unconventional superconductors form phase diagrams that also contain other strongly correlated states. Many systems of interest are therefore close to more than one instability, and tuning between the resultant ordered phases is the subject of intense research 1 . In recent years, uniaxial pressure applied using piezoelectric-based devices has been shown to be a particularly versatile new method of tuning 2,3 , leading to experiments that have advanced our understanding of the fascinating unconventional superconductor Sr 2 RuO 4 (refs.  4–9 ). Here we map out its phase diagram using high-precision measurements of the elastocaloric effect in what we believe to be the first such study including both the normal and the superconducting states. We observe a strong entropy quench on entering the superconducting state, in excellent agreement with a model calculation for pairing at the Van Hove point, and obtain a quantitative estimate of the entropy change associated with entry to a magnetic state that is observed in proximity to the superconductivity. The phase diagram is intriguing both for its similarity to those seen in other families of unconventional superconductors and for extra features unique, so far, to Sr 2 RuO 4 . 
    more » « less
  6. Topological semimetals are predicted to exhibit unconventional electrodynamics, but a central experimental challenge is singling out the contributions from the topological bands. TaAs is the prototypical example, where 24 Weyl points and 8 trivial Fermi surfaces make the interpretation of any experiment in terms of band topology ambiguous. We report magneto-infrared reflection spectroscopy measurements on TaAs. We observed sharp inter-Landau level transitions from a single pocket of Weyl Fermions in magnetic fields as low as 0.4 tesla. We determine the W2 Weyl point to be 8.3 meV below the Fermi energy, corresponding to a quantum limit—the field required to reach the lowest LL—of 0.8 tesla—unprecedentedly low for Weyl Fermions. LL spectroscopy allows us to isolate these Weyl Fermions from all other carriers in TaAs, and our result provides a way for directly exploring the more exotic quantum phenomena in Weyl semimetals, such as the chiral anomaly. 
    more » « less